Does this carbon nanotube computer spell the end for silicon? Stanford University rightOriginal StudyPosted by Tom Abate-Stanford on September 27 2013Engineers have built a basic computer using carbon nanotubes a success that points to a potentially faster more efficient alternative to silicon chips.The achievement is reported in an article on the cover of the journal Nature.People have been talking about a new era of carbon nanotube electronics moving beyond silicon says Subhasish Mitra an electrical engineer and computer scientist at Stanford University who co-led the work. But there have been few demonstrations of complete digital systems using this exciting technology. Here is the proof.Experts say the achievement will galvanize efforts to find successors to silicon chips which could soon encounter physical limits that might prevent them from delivering smaller faster cheaper electronic devices.Carbon nanotubes [CNTs] have long been considered as a potential successor to the silicon transistor says Professor Jan Rabaey a world expert on electronic circuits and systems at the University of California Berkeley.But until now it hasn t been clear that CNTs a semiconductor material could fulfill those expectations.There is no question that this will get the attention of researchers in the semiconductor community and entice them to explore how this technology can lead to smaller more energy-efficient processors in the next decade Rabaey says.Mihail Roco a senior advisor for nanotechnology at the National Science Foundation called the work an important scientific breakthrough.It was roughly 15 years ago that carbon nanotubes were first fashioned into transistors the on-off switches at the heart of digital electronic systems.But a bedeviling array of imperfections in these carbon nanotubes has long frustrated efforts to build complex circuits using CNTs.Professor Giovanni De Micheli director of the Institute of Electrical Engineering at École Polytechnique Fédérale de Lausanne in Switzerland highlighted two key contributions the Stanford team has made to this worldwide effort.First they put in place a process for fabricating CNT-based circuits De Micheli says. Second they built a simple but effective circuit that shows that computation is doable using CNTs.As Mitra says: It s not just about the CNT computer. It s about a change in directions that shows you can build something real using nanotechnologies that move beyond silicon and its cousins.Such concerns arise from the demands that designers place upon semiconductors and their fundamental workhorse unit those on-off switches known as transistors.For decades progress in electronics has meant shrinking the size of each transistor to pack more transistors on a chip. But as transistors become tinier they waste more power and generate more heat—all in a smaller and smaller space as evidenced by the warmth emanating from the bottom of a laptop.Many researchers believe that this power-wasting phenomenon could spell the end of Moore s Law named for Intel Corp. co-founder Gordon Moore who predicted in 1965 that the density of transistors would double roughly every two years leading to smaller faster and as it turned out cheaper electronics.But smaller faster and cheaper has also meant smaller faster and hotter.Energy dissipation of silicon-based systems has been a major concern says Anantha Chandrakasan head of electrical engineering and computer science at MIT and a world leader in chip research. He called the Stanford work a major benchmark in moving CNTs toward practical use.CNTs are long chains of carbon atoms that are extremely efficient at conducting and controlling electricity. They are so thin—thousands of CNTs could fit side by side in a human hair—that it takes very little energy to switch them off according to Wong a co-author of the paper.Think of it as stepping on a garden hose Wong explains. The thinner the hose the easier it is to shut off the flow.In theory this combination of efficient conductivity and low-power switching make carbon nanotubes excellent candidates to serve as electronic transistors.CNTs could take us at least an order of magnitude in performance beyond where you can project silicon could take us Wong said.But inherent imperfections have stood in the way of putting this promising material to practical use.First CNTs do not necessarily grow in neat parallel lines as chipmakers would like.Over time researchers have devised tricks to grow 99.5 percent of CNTs in straight lines. But with billions of nanotubes on a chip even a tiny degree of misaligned tubes could cause errors so that problem remained.A second type of imperfection has also stymied CNT technology.Depending on how the CNTs grow a fraction of these carbon nanotubes can end up behaving like metallic wires that always conduct electricity instead of acting like semiconductors that can be switched off.Since mass production is the eventual goal researchers had to find ways to deal with misaligned and/or metallic CNTs without having to hunt for them like needles in a haystack.We needed a way to design circuits without having to look for imperfections or even know where they were Mitra says.The Stanford paper describes a two-pronged approach that the authors call an imperfection-immune design.To eliminate the wire-like or metallic nanotubes the Stanford team switched off all the good CNTs. Then they pumped the semiconductor circuit full of electricity. All of that electricity concentrated in the metallic nanotubes which grew so hot that they burned up and literally vaporized into tiny puffs of carbon dioxide. This sophisticated technique eliminated the metallic CNTs in the circuit.Bypassing the misaligned nanotubes required even greater subtlety.The Stanford researchers created a powerful algorithm that maps out a circuit layout that is guaranteed to work no matter whether or where CNTs might be askew.This imperfections-immune design [technique] makes this discovery truly exemplary says Sankar Basu a program director at the National Science Foundation.The Stanford team used this imperfection-immune design to assemble a basic computer with 178 transistors a limit imposed by the fact that they used the university s chip-making facilities rather than an industrial fabrication process.Their CNT computer performed tasks such as counting and number sorting. It runs a basic operating system that allows it to swap between these processes. In a demonstration of its potential the researchers also showed that the CNT computer could run MIPS a commercial instruction set developed in the early 1980s by then Stanford engineering professor and now university President John Hennessy.Though it could take years to mature the Stanford approach points toward the possibility of industrial-scale production of carbon nanotube semiconductors according to Naresh Shanbhag a professor at the University of Illinois at Urbana-Champaign and director of SONIC a consortium of next-generation chip design research.The Wong/Mitra paper demonstrates the promise of CNTs in designing complex computing systems Shanbhag says adding that this will motivate researchers elsewhere toward greater efforts in chip design beyond silicon.These are initial necessary steps in taking carbon nanotubes from the chemistry lab to a real environment says Supratik Guha director of physical sciences for IBM s Thomas J. Watson Research Center and a world leader in CNT research.The National Science Foundation SONIC the Stanford Graduate Fellowship and the Hertz Foundation Fellowship funded the work.Source: Stanford UniversityYou are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.